Optomechanically induced transparency in the presence of an external time-harmonic-driving force
نویسندگان
چکیده
We propose a potentially valuable scheme to measure the properties of an external time-harmonic-driving force with frequency ω via investigating its interaction with the combination of a pump field and a probe field in a generic optomechanical system. We show that the spectra of both the cavity field and output field in the configuration of optomechanically induced transparency are greatly modified by such an external force, leading to many interesting linear and non-linear effects, such as the asymmetric structure of absorption in the frequency domain and the antisymmetry breaking of dispersion near ω = ωm. Furthermore, we find that our scheme can be used to measure the initial phase of the external force. More importantly, this setup may eliminate the negative impact of thermal noise on the measurement of the weak external force in virtue of the process of interference between the probe field and the external force. Finally, we show that our configuration can be employed to improve the measurement resolution of the radiation force produced by a weak ultrasonic wave.
منابع مشابه
Delay-dependent stability for transparent bilateral teleoperation system: an LMI approach
There are two significant goals in teleoperation systems: Stability and performance. This paper introduces an LMI-based robust control method for bilateral transparent teleoperation systems in presence of model mismatch. The uncertainties in time delay in communication channel, task environment and model parameters of master-slave systems is called model mismatch. The time delay in communicatio...
متن کاملParity-time-symmetry enhanced optomechanically-induced-transparency
We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in prev...
متن کاملCasimir switch: steering optical transparency with vacuum forces
The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered b...
متن کاملOptomechanically-induced transparency in parity-time-symmetric microresonators
Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency, i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a ...
متن کاملGeneral treatment of optical forces and potentials in mechanically variable photonic systems.
We present an analytical formalism for the treatment of the forces and potentials induced by light in mechanically variable photonic systems (or optomechanically variable systems) consisting of linear media. Through energy and photon-number conservation, we show that knowledge of the phase and the amplitude response of an optomechanically variable system, and its dependence on the mechanical co...
متن کامل